Existence and Multiplicity Results for Steklov Problems with p(.)-Growth Conditions
نویسندگان
چکیده
منابع مشابه
Existence and multiplicity of solutions for discrete Neumann-Steklov problems with singular φ-Laplacian
is a forward difference operator with uk = u(tk), uk = u(tk+) – u(tk), tN = T and ∇ is a backward difference operator with ∇uk = u(tk) – u(tk–), t = , f : [,T]×R → R is continuous. In addition, the nonlinear difference equations play an important role inmany fields such as biology, engineering, science and technology where discrete phenomena abound, meanwhile, from the advent and rise of ...
متن کاملExistence and Multiplicity of Solutions for a Steklov Problem Involving the P(x)-laplace Operator
In this article we study the nonlinear Steklov boundary-value problem ∆p(x)u = |u|p(x)−2u in Ω, |∇u|p(x)−2 ∂u ∂ν = λf(x, u) on ∂Ω. Using the variational method, under appropriate assumptions on f , we obtain results on existence and multiplicity of solutions.
متن کاملExistence and multiplicity results for nonlinear boundary value problems
This paper studies the existence of positive solutions for a class of boundary value problems of elliptic degenerate equations. By using bifurcation and fixed point index theories in the frame of approximation arguments, the criteria of the existence, multiplicity and nonexistence of positive solutions are established. c © 2007 Elsevier Ltd. All rights reserved.
متن کاملExistence results of infinitely many solutions for a class of p(x)-biharmonic problems
The existence of infinitely many weak solutions for a Navier doubly eigenvalue boundary value problem involving the $p(x)$-biharmonic operator is established. In our main result, under an appropriate oscillating behavior of the nonlinearity and suitable assumptions on the variable exponent, a sequence of pairwise distinct solutions is obtained. Furthermore, some applications are pointed out.
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Iranian Mathematical Society
سال: 2018
ISSN: 1017-060X,1735-8515
DOI: 10.1007/s41980-018-0054-5